305 / 2018-05-03 10:19:03
An algorithm for suppressing noise in seismic data based on compressed sensing
Seismic data; Suppressing noise; Compressive sensing; Block sparse representation; K-singular value decomposition;
摘要录用
Rui-Sheng Jia / Shandong University of Science and Technology
The noise introduced in the process of seismic exploration caused serious distortion and interference to the seismic signal, and the conventional seismic data denoising methods can not meet the requirements of high precision seismic exploration. For this reason, an algorithm for suppressing noise in seismic data based on compressed sensing is proposed. According to the local direction feature of seismic data, the seismic data space is divided into multiple subspaces, and the K- singular value decomposition algorithm is used to study the analytical dictionary in each subspace, so as to realize the optimal sparse representation of different subspace data blocks. In the process of seismic data reconstruction, each data block is estimated in all subspaces, and then the optimal estimation of each data block is obtained according to the minimum error criterion of sparse representation, then the seismic data are reconstructed to achieve the purpose of suppressing noise. It is applied to seismic data with different signal-to-noise ratios, and compared with conventional methods of seismic data denoising, the experiment result shows that the proposed method can effectively reduce the noise in seismic data.
重要日期
  • 会议日期

    10月22日

    2018

    10月24日

    2018

  • 05月31日 2018

    摘要截稿日期

  • 07月05日 2018

    初稿截稿日期

  • 08月10日 2018

    初稿录用通知日期

  • 10月24日 2018

    注册截止日期

主办单位
北京科技大学
McGill University
中国矿业大学(北京)
河南理工大学
University of Wollongong
东北大学
重庆大学
中国矿业大学
Laurentian University
辽宁工程技术大学
西安科技大学
北方工业大学
江西理工大学
黑龙江科技大学
协办单位
中国职业安全健康协会
中国安全生产科学研究院
煤炭信息研究院
中安安全工程研究院
International Journal of Mining Science and Technology
Safety Science
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询