1 / 2018-03-13 13:33:29
Motor Fault Detection Based on Multi-Agent Classifier System
Multi-agent,Data Classification,fault detection
全文待审
Farhad Pourpanah / southern university of science and technology
An early detection of component faults is crucial for motors. In this paper, we present a novel framework to detect and identify fault conditions of three-phase induction motors using an ensemble of classifiers. The Q-Learning Multi-Agent Classifier System (QMACS) is a multi-agent system, which uses the trust-negotiation-communication (TNC) reasoning scheme. Hybrid models of the Q-learning and online neural networks (NNs) are used as learning agents of the multi-agent system. The effectiveness of QMACS for detecting and identifying motor faults is evaluated through experiments. Time-domain statistical features are extracted and fed into QMACS for classification. Experiment results demonstrate that QMACS is able to achieve a superior performance with a decision fusion of its constituents.
重要日期
  • 会议日期

    06月28日

    2018

    06月30日

    2018

  • 03月26日 2018

    摘要截稿日期

  • 05月21日 2018

    初稿截稿日期

  • 06月05日 2018

    初稿录用通知日期

  • 06月12日 2018

    终稿截稿日期

  • 06月30日 2018

    注册截止日期

承办单位
Gheorghe Asachi Technical University of Iasi
University of Pitesti
Romania
历届会议
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询