181 / 2019-06-28 15:30:57
ECG-Signal Classification using SVM with Multi-feature
Bioelectric Signal,,Electrocardiogram,Heartbeat classification,Support vector machine (SVM)
全文待审
Zhaoyang Ge / School of Information Engineering, Zhengzhou University
Zhihua Zhu / School of Information Engineering, Zhengzhou University
Panpan Feng / Cooperative Innovation Center of Internet Healthcare, Zhengzhou University
Shuo Zhang / Cooperative Innovation Center of Internet Healthcare, Zhengzhou University
Jing Wang / Cooperative Innovation Center of Internet Healthcare, Zhengzhou University
Bing Zhou / School of Information Engineering, Zhengzhou University
Automated bioelectric signal analysis has an important application in the wisdom medical care. In this paper, we propose a novel approach for cardiac arrhythmia diseases classification. We designed a novel analysis framework which extract different feature transformations from ECG signals. And we trained the SVM model for multi-feature to obtain the prediction. Finally, we tested our approach on the public MIT-BIH arrhythmia database. Experiments on the datasets demonstrate our model has better classification performance than other approaches of the state-of-the-art.
重要日期
  • 会议日期

    10月09日

    2019

    10月10日

    2019

  • 07月20日 2019

    初稿截稿日期

  • 10月10日 2019

    注册截止日期

主办单位
Xi’an Jiaotong University
历届会议
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询