780 / 2019-04-28 21:37:32
A Line Fault Type Detection Method Based on Optimal Sample Training Support Vector Machine in MMC-HVDC Transmission System
EMD,fault detection,MMC-HVDC,optimization algorithm,SVM.
全文录用
The research on accurately identifying the type of line fault of the MMC-HVDC system is of great significance for the fast recovery of the faulty line. However, the high-resistance ground fault has always been a difficult point of identification. In this paper, a fault detection method based on Support Vector Machine (SVM) is proposed. The empirical mode decomposition (EMD) is used to extract several high-frequency modal quantities in the fault voltage signal. The optimal weights of these extraction quantities are searched by the optimization algorithm to extract the characteristics of the original fault voltage to train the SVM classification model.This paper establishes a ±250kV MMC-HVDC simulation model to verify the identification results. The simulation results prove that the SVM model can quickly and accurately identify different types of faults at low sampling frequencies, and has high accuracy for the identification of high-resistance ground faults.
重要日期
  • 会议日期

    10月21日

    2019

    10月24日

    2019

  • 10月13日 2019

    摘要录用通知日期

  • 10月13日 2019

    初稿截稿日期

  • 10月14日 2019

    初稿录用通知日期

  • 10月24日 2019

    注册截止日期

  • 10月29日 2019

    终稿截稿日期

承办单位
Xi'an Jiaotong University
联系方式
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询