920 / 2019-04-30 16:45:30
Short Term Load Forecasting Based on VMD-DNN
Short-term load forecasting; variational mode decomposition; deep neural networks; empirical mode decomposition
全文录用
Can Wang / State Grid Anhui electric power company
Yuan MA / Anhui University
Shaoxiong Huang / State Grid Anhui electric power company
Jinhui Ma / State Grid Anhui electric power company
Song Wang / State Grid Anhui electric power company
Jinjin Ding / Anhui Electric Power Research Institute
Improving the accuracy of load forecasting is of great significance to economic dispatch and stable operation of power system. A short-term load forecasting model based on variational mode decomposition (VMD) and deep neural network (DNN) is proposed. VMD algorithm is used to decompose load series into different intrinsic mode functions (IMF), and each IMF is combined with DNN for prediction. Finally, the four forecasting results of each part are added together. Through experimental simulation, compared with the forecasting result of DNN and empirical mode decomposition (EMD) methods, the proposed method can effectively improve the load forecasting accuracy.
重要日期
  • 会议日期

    10月21日

    2019

    10月24日

    2019

  • 10月13日 2019

    摘要录用通知日期

  • 10月13日 2019

    初稿截稿日期

  • 10月14日 2019

    初稿录用通知日期

  • 10月24日 2019

    注册截止日期

  • 10月29日 2019

    终稿截稿日期

承办单位
Xi'an Jiaotong University
联系方式
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询