974 / 2019-04-30 23:49:46
Short-term Load Forecasting Model Based on Attention-GRU
attention mechanism; gated recurrent unit (GRU); short-term load forecasting
全文录用
Short-term load forecasting is one of important bases to ensure the stability and economic operation of electrical power system. In order to improve its accuracy, a model based on attention gated recurrent unit (Attention-GRU) network is proposed in this paper. The gated recurrent unit (GRU) network is capable of considering timing and non-linear characteristics of load data simultaneously to obtain higher forecasting accuracy, which cannot be achieved by the prediction methods based on statistical analysis and traditional machine learning. The introduction of attention mechanism can highlight the critical input features to improve forecasting accuracy. According to the results of simulation experiment using the actual load and electricity price data from a certain region of Australia, the presented model has higher forecasting accuracy and ideal efficiency compared with the other models based on gated recurrent unit (GRU), long short-term memory (LSTM) and back-propaganda (BP) neural network.
重要日期
  • 会议日期

    10月21日

    2019

    10月24日

    2019

  • 10月13日 2019

    摘要录用通知日期

  • 10月13日 2019

    初稿截稿日期

  • 10月14日 2019

    初稿录用通知日期

  • 10月24日 2019

    注册截止日期

  • 10月29日 2019

    终稿截稿日期

承办单位
Xi'an Jiaotong University
联系方式
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询