SREKF Based State of Health Estimation for Lithium-Ion Battery
编号:39 访问权限:仅限参会人 更新:2020-11-11 12:09:21 浏览:159次 张贴报告

报告开始:暂无开始时间(12)

报告时间:暂无持续时间

所在会场:[暂无会议] [暂无会议段]

暂无文件

摘要
State of health (SOH) estimation plays an important role in battery management system. This problem is addressed by introducing a second-order RC equivalent circuit model (ECM) and square root extended kalman filter (SREKF) in this work. According to the ECM, the ohmic resistance (R0) which represents the SOH is molded as a state vector, and lithium battery SOH is obtained by using the internal relationship between ohm resistance and SOH. Then the state of the resulting nonlinear dynamic system is estimated in real time by the SREKF which can guarantee the symmetry and non-negative characteristics of the state variance matrix by the square root method recursively. The verification results show that the SREKF algorithm can estimate the SOH parameter more accurately and reduce the maximum error of the ohmic resistance by 6% under 1C-rate constant current test compared with the EKF algorithm.
关键词
SOH,Lithium Battery,SREK,ohmic resistance
报告人
Fengzhu Zhang
student Xi’an University of Technology

稿件作者
Fengzhu Zhang Xi’an University of Technology
Zhiyu Zhang Xi’an University of Technology
Wentao Ma Xi’an University of Technology
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    10月21日

    2019

    10月24日

    2019

  • 10月13日 2019

    摘要录用通知日期

  • 10月13日 2019

    初稿截稿日期

  • 10月14日 2019

    初稿录用通知日期

  • 10月24日 2019

    注册截止日期

  • 10月29日 2019

    终稿截稿日期

承办单位
Xi'an Jiaotong University
联系方式
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询