Prediction and Optimization on Energy Consumption of Data Center Based on Multi-layer Feedforward Neural Network
编号:91 访问权限:仅限参会人 更新:2020-11-11 12:09:34 浏览:152次 张贴报告

报告开始:暂无开始时间(12)

报告时间:暂无持续时间

所在会场:[暂无会议] [暂无会议段]

暂无文件

摘要
The characteristics of energy consumption calculation are large amounts of equipments, high parameter coupling, non-linear calculation and complex modeling. Multi-layer feedforward neural network model is used to establish relations between the parameters of air conditioning system, computer equipments, power supply system and the energy consumption values. The error back-propagation algorithm based on gradient descent strategy is used to adjust connection weight and threshold of the neurons in hidden layers. Through the prediction of energy consumption with the variation of uncontrollable parameters, the adjustment of controllable parameters such as the temperature target value of air conditioner, the control mode of fresh air exchangers and humidifiers can obtain the target of energy consumption minimization.
关键词
Air conditioning system,Energy Consumption Optimization,Error Back-Propagation,Multi-layer Feedforward Neural Network
报告人
Song Zhang
Northeast Electric Power Design Institute Co., Ltd.

稿件作者
Song Zhang Northeast Electric Power Design Institute Co., Ltd.
Xin Ye Northeast Electric Power Design Institute Co., Ltd.
Ying Ren Northeast Electric Power Design Institute Co., Ltd.
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    10月21日

    2019

    10月24日

    2019

  • 10月13日 2019

    摘要录用通知日期

  • 10月13日 2019

    初稿截稿日期

  • 10月14日 2019

    初稿录用通知日期

  • 10月24日 2019

    注册截止日期

  • 10月29日 2019

    终稿截稿日期

承办单位
Xi'an Jiaotong University
联系方式
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询