136 / 2019-12-15 03:30:00
Persymmetric Subspace Rao and Wald Tests for Distributed Target in Partially Homogeneous Environment
Adaptive detection; Rao test; Wald test; distributed target; non-homogeneity
全文录用
Yongchan Gao / Xidian University, China
Linlin Mao / Institute of Acoustics, Chinese Academy of Sciences, China
Hongbing Ji / School of Electronic Engineering, Xidian University, China
Liyan Pan / Xidian University, China
We consider the problem of distributed target detection in partially homogeneous Gaussian clutter with unknown covariance matrix. The target is assumed to lie in a multi-rank subspace with unknown coordinates. By incorporating the persymmetric structure of the covariance matrix into the detector design, we devise a persymmetric subspace Rao detector (Per-Rao) and a persymmetric subspace Wald detector (Per-Wald). It is remarkable that the Per-Rao coincide with the Per-Wald in the partially homogeneous environment, and both detectors are shown to ensure constant false alarm rate (CFAR) with respect to the covariance matrix. Numerical examples verify the superiority of the proposed methods in training-restricted situations.
重要日期
  • 会议日期

    06月08日

    2020

    06月11日

    2020

  • 01月12日 2020

    初稿截稿日期

  • 04月15日 2020

    提前注册日期

  • 12月31日 2020

    注册截止日期

主办单位
IEEE Signal Processing Society
承办单位
Zhejiang University
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询