245 / 2020-01-04 03:27:00
Segmented Random Sparse MIMO-SAR 3-D Imaging Based On Compressed Sensing
MIMO-SAR; Segmented random sparse; CS; UGV; Sparsity
全文被拒
Haoran Li / National University of Defense Technology, Changsha, Hunan, China
Tian Jin / National University of Defense Technology, China
Yongpeng Dai / National University of Defense Technology, China
This paper presents a segmented random sparse multiple-input and multiple-output synthetic aperture radar (MIMO-SAR) 3-D imaging based on compress sensing (CS). Since the targets of interest for unmanned ground vehicle (UGV) forward looking array are usually sparse, the system complexity can be reduced using CS theory. The sparsity is determined by 2-D images of different positions during UGV moving forward, which can reduce the reconstruction time without multiple iterations. Combining the MIMO array and the path of UGV, 3-D imaging of the forward scene can be achieved. Segmented random sparse of the original data from MIMO-SAR ensure the accuracy of 3-D reconstruction, by using sufficient information. Simulation results are presented to demonstrate the validity of the proposed method.
重要日期
  • 会议日期

    06月08日

    2020

    06月11日

    2020

  • 01月12日 2020

    初稿截稿日期

  • 04月15日 2020

    提前注册日期

  • 12月31日 2020

    注册截止日期

主办单位
IEEE Signal Processing Society
承办单位
Zhejiang University
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询