An Open-Source Toolbox with Classical Classifiers for Electricity Theft Detection
编号:179 访问权限:仅限参会人 更新:2021-12-05 05:51:06 浏览:636次 口头报告

报告开始:2021年12月16日 10:00(Asia/Shanghai)

报告时间:15min

所在会场:[H] Other topics in Electrical Engineering [H1] Session 18

视频 无权播放 演示文件

提示:该报告下的文件权限为仅限参会人,您尚未登录,暂时无法查看。

摘要
Recently, there is increasing interest in detecting electricity thieves for economic benefits for power companies, and many works aim to improve the accuracy of electricity theft detection. Nevertheless, a core obstacle that currently hinders the direct comparison of classifiers for electricity theft detection is the lack of a standard and public dataset, since fraudulent power load profiles are usually difficult to collect for various reasons, including cost, cumber, and confidentiality. Therefore, this paper presents an open-source toolbox, which generates different kinds of fraudulent power load profiles from attack models, and integrates classical classifiers (e.g., support vector machine, multi-layer perceptron, convolutional neural network, long short-term memory, bidirectional long short-term memory) with different performance as baselines for the comparison with new algorithms. Users can easily generate datasets and modify parameters of classical classifiers guided by user friendly interactive interfaces. The codes, toolbox, and user manuals are available online and it is free to use and extend them.
关键词
Electricity theft detection, toolbox, attack models, power load, classifier
报告人
Wenlong Liao
PhD student Aalborg University

稿件作者
Wenlong Liao Aalborg University
Birgitte Bak-Jensen Aalborg University
Jayakrishnan Radhakrishna Pillai Aalborg University
Zhe Yang Aalborg University
Yusen Wang KTH Royal Institute of Technology
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    07月11日

    2023

    08月18日

    2023

  • 11月10日 2021

    初稿截稿日期

  • 12月10日 2021

    注册截止日期

  • 12月11日 2021

    报告提交截止日期

主办单位
IEEE IAS
承办单位
IEEE IAS Student Chapter of Southwest Jiaotong University (SWJTU)
IEEE IAS Student Chapter of Huazhong University of Science and Technology (HUST)
IEEE PELS (Power Electronics Society) Student Chapter of HUST
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询