State Identification of Transformers under DC Bias Based on Nonlinear Vibration Feature
编号:194 访问权限:仅限参会人 更新:2021-12-03 10:46:30 浏览:546次 口头报告

报告开始:2021年12月16日 10:00(Asia/Shanghai)

报告时间:15min

所在会场:[D] High voltage and insulation technology [D3] Session 16

视频 无权播放 演示文件

提示:该报告下的文件权限为仅限参会人,您尚未登录,暂时无法查看。

摘要
Power transformers under DC bias means that there is a DC component in the magnetic flux, which has an important impact on the vibration of transformer. In this paper, the mechanism of the transformer vibration caused by magnetic DC bias is reviewed. Next, a feature extraction method based on vibration mutual information is proposed, and a neutral point current prediction model based on the extreme learning machine (ELM) algorithm is also established. Finally, experiments are conducted to verify the feature extraction method, and the neutral point current prediction model is trained and tested. The results show that the extracted nonlinear vibration feature combined with the ELM method can identify the transformer state under DC bias.
关键词
Extreme learning machine,DC bias,Mutual information,Transformer vibration
报告人
Jingchun Zhang
China Jiliang University

稿件作者
Jing Wu Zhejiang Dayou Industrial Co., Ltd
Jie Xu Zhejiang Dayou Industrial Co., Ltd
Weiyan Zheng Zhejiang Dayou Industrial Co., Ltd
Ming Jin Zhejiang Dayou Industrial Co., Ltd
Jingchun Zhang China Jiliang University
Guoping Zou Zhejiang University
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    07月11日

    2023

    08月18日

    2023

  • 11月10日 2021

    初稿截稿日期

  • 12月10日 2021

    注册截止日期

  • 12月11日 2021

    报告提交截止日期

主办单位
IEEE IAS
承办单位
IEEE IAS Student Chapter of Southwest Jiaotong University (SWJTU)
IEEE IAS Student Chapter of Huazhong University of Science and Technology (HUST)
IEEE PELS (Power Electronics Society) Student Chapter of HUST
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询