Research on Radio Interference of AC/DC Parallel Transmission Line
编号:208 访问权限:仅限参会人 更新:2021-12-03 10:48:02 浏览:598次 口头报告

报告开始:2021年12月16日 11:30(Asia/Shanghai)

报告时间:15min

所在会场:[D] High voltage and insulation technology [D4] Session 22

视频 无权播放 演示文件

提示:该报告下的文件权限为仅限参会人,您尚未登录,暂时无法查看。

摘要
The radio interference generation mechanism of AC-DC parallel transmission lines is different from that of conventional lines, so that the prediction model is either too rough and leads to large errors, or too complicated to be mastered by engineers. In order to take into account the accuracy of radio interference solution and engineering practicability, an error back-propagation feedforward neural network model combined with gray correlation theory is proposed. First, the gray theory screening of multiple impact indicators of radio interference, and then the indicators that have a real impact on radio interference as input variables, the BP neural network fitting algorithm is used to predict the radio interference. Validation combined with the actual measured radio interference samples of the AC-DC parallel transmission lines that have been put into operation, the results show that compared with the traditional algorithm, the prediction accuracy of the BP neural network prediction model is improved by 13.58%.
关键词
暂无
报告人
Liu Siyu
Three Gorges University

稿件作者
zheng xinyi Three Gorges University
Liu Siyu Three Gorges University
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    07月11日

    2023

    08月18日

    2023

  • 11月10日 2021

    初稿截稿日期

  • 12月10日 2021

    注册截止日期

  • 12月11日 2021

    报告提交截止日期

主办单位
IEEE IAS
承办单位
IEEE IAS Student Chapter of Southwest Jiaotong University (SWJTU)
IEEE IAS Student Chapter of Huazhong University of Science and Technology (HUST)
IEEE PELS (Power Electronics Society) Student Chapter of HUST
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询