High Impedance Fault Diagnosis Method Based on Conditional Wasserstein Generative Adversarial Network
编号:262 访问权限:仅限参会人 更新:2021-12-10 18:48:03 浏览:666次 口头报告

报告开始:2021年12月15日 17:00(Asia/Shanghai)

报告时间:15min

所在会场:[F] AI-driven technology [F2] Session 12

视频 无权播放 演示文件

提示:该报告下的文件权限为仅限参会人,您尚未登录,暂时无法查看。

摘要
Data-driven fault diagnosis of high impedance fault (HIF) has received increasing attention and achieved fruitful results. However, HIF data is difficult to obtain in engineering. Furthermore, there exists an imbalance between the fault data and non-fault data, making data-driven methods hard to detect HIFs reliably under the small imbalanced sample condition. To solve this problem, this paper proposes a novel HIF diagnosis method based on conditional Wasserstein generative adversarial network (WCGAN). By adversarial training, the generator can generate sufficient labeled zero-sequence current signals, which can be used as training data to expand the limited training set and achieve the balanced distribution of the samples. In addition, the Wasserstein distance was introduced to improve the loss function. Experimental results indicate that the proposed method can generate high-quality samples and achieve a high accuracy rate of fault detection in the case of small imbalanced samples.
关键词
high impedance fault, fault diagnosis, small imbalanced sample, generative adversarial network, data augmentation
报告人
Liu Wen-li
Fuzhou University

稿件作者
Liu Wen-li Fuzhou University
Guo Mou-fa Fuzhou University
Gao Jian-Hong Fuzhou University
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    07月11日

    2023

    08月18日

    2023

  • 11月10日 2021

    初稿截稿日期

  • 12月10日 2021

    注册截止日期

  • 12月11日 2021

    报告提交截止日期

主办单位
IEEE IAS
承办单位
IEEE IAS Student Chapter of Southwest Jiaotong University (SWJTU)
IEEE IAS Student Chapter of Huazhong University of Science and Technology (HUST)
IEEE PELS (Power Electronics Society) Student Chapter of HUST
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询