Application of ARIMA and 2D-CNNs Using Recurrence Plots for Medium-Term Load Forecasting
编号:285 访问权限:仅限参会人 更新:2021-12-10 13:51:22 浏览:710次 张贴报告

报告开始:2021年12月17日 14:35(Asia/Shanghai)

报告时间:5min

所在会场:[Z] Poster Session [Z6] Poster Session 6: AI-driven technology

视频 无权播放 演示文件 附属文件

提示:该报告下的文件权限为仅限参会人,您尚未登录,暂时无法查看。

摘要
Load forecasting is beneficial for planning, operation, and control actions of power systems. Historical documented real-time load data can be utilized to predict the future load on power systems. In this regard the advanced artificial intelligence (AI) techniques for data analysis can be effective for medium-term load forecasting. The accuracy and computational cost of the model are key indicators for effectively forecasting power loads. In this paper, a recurrence plot (RP) time encoding, and 2D-CNN model is applied to a real-time Turkey load consumption dataset for making prediction and is compared with the autoregressive integrated moving average (ARIMA) model for the same data to demonstrate their effectiveness for medium term load forecasting.
关键词
2D Convolutional Neural Networks,ARIMA,Power Load Forecasting,Recurrence Plots
报告人
Manish Patil
Student Birla Institute of Technology and Science (BITS), Pilani - Hyderabad Campus

稿件作者
Manish Patil Birla Institute of Technology and Science (BITS), Pilani - Hyderabad Campus
Renuka Loka Birla Institute of Technology and Science (BITS), Pilani - Hyderabad Campus
Alivelu Parimi Birla Institute of Technology and Science (BITS), Pilani - Hyderabad Campus
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    07月11日

    2023

    08月18日

    2023

  • 11月10日 2021

    初稿截稿日期

  • 12月10日 2021

    注册截止日期

  • 12月11日 2021

    报告提交截止日期

主办单位
IEEE IAS
承办单位
IEEE IAS Student Chapter of Southwest Jiaotong University (SWJTU)
IEEE IAS Student Chapter of Huazhong University of Science and Technology (HUST)
IEEE PELS (Power Electronics Society) Student Chapter of HUST
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询