A Fault Diagnosis Method of Power Transformer Based on Improved DDAG-SVM
编号:50 访问权限:仅限参会人 更新:2021-12-03 10:32:34 浏览:637次 张贴报告

报告开始:2021年12月17日 15:55(Asia/Shanghai)

报告时间:5min

所在会场:[Z] Poster Session [Z9] Poster Session 9: Power system and automation

视频 无权播放 演示文件

提示:该报告下的文件权限为仅限参会人,您尚未登录,暂时无法查看。

摘要
With the development of artificial intelligence technology, neural networks, fuzzy technology, expert systems, grey system theory, fuzzy clustering and other methods have gradually been applied to transformer fault diagnosis, and have achieved better diagnostic results. However, the above methods all have certain shortcomings. For example, knowledge-based methods such as artificial neural networks need to obtain an infinite number of fault samples, and the training time is long, and there are problems such as local optimal solutions; This paper proposes a transformer fault diagnosis method based on the improved DDAG-SVM, which enriches the transformer fault diagnosis information, and combines the dissolved gas composition, content and change in the oil, operating voltage and current and other information to establish a comprehensive fault diagnosis system based on the transformer. It is helpful to guide the efficient development of maintenance.
关键词
Transformer fault diagnosis , Support vector machines, Directed acyclic graph, Overheating failure , Decision tree .
报告人
Gaoming Wang
南瑞科技股份有限公司

稿件作者
Gaoming Wang 南瑞科技股份有限公司
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    07月11日

    2023

    08月18日

    2023

  • 11月10日 2021

    初稿截稿日期

  • 12月10日 2021

    注册截止日期

  • 12月11日 2021

    报告提交截止日期

主办单位
IEEE IAS
承办单位
IEEE IAS Student Chapter of Southwest Jiaotong University (SWJTU)
IEEE IAS Student Chapter of Huazhong University of Science and Technology (HUST)
IEEE PELS (Power Electronics Society) Student Chapter of HUST
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询