A Deep Learning Framework for Detecting Aortic Dissection based on Non-Contrast-Enhanced CT images
编号:33 访问权限:仅限参会人 更新:2021-11-05 16:56:23 浏览:909次 特邀报告

报告开始:2021年11月14日 14:45(Asia/Shanghai)

报告时间:25min

所在会场:[PS2] Plenary Session 2 & CT Session [MR2] Workshop on MRI Session 2

暂无文件

摘要
Aortic dissection (AD) is a dangerous disease with a high mortality which requires contrast enhanced computed tomography (CE-CT) for clinical diagnosis. However, CE-CT needs injecting contrast agents which may cause allergic reactions or renal failure. To address this issue, a cascaded multi-task generative framework was proposed to detect AD based on NCE-CT images. The framework jointly learns non-contrast to contrast (NC2C) transformation, true and false lumen segmentation, and AD or non-AD classification to improve the accuracy of AD detection. We evaluated the framework and compared it with state-of-the-art algorithms based on a clinical dataset collected from two hospitals. Experiment results demonstrate that the proposed framework outperforms state-of-the-art algorithms and is able to detect AD with accuracy of 84.4%, sensitivity of 93.8%, and specificity of 75.0%. The framework is valuable to alleviate the misdiagnosis when only NCE-CT images are available for detecting AD.
关键词
暂无
报告人
Guoxi Xie
Professor Guangzhou Medical University

* Director of the Department of Biomedical Engineering, Guangzhou Medical University
* Member of International Society of Magnetic Resonance In Medicine
* Member of Chinese Society of Biomedical Engineering

发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    11月13日

    2021

    11月14日

    2021

  • 09月30日 2021

    报告提交截止日期

  • 11月14日 2021

    注册截止日期

主办单位
IEEE北京分会
中国生物医学工程学会医学物理分会
中国电子学会生命电子学分会
承办单位
中国科学技术大学
安徽省生物医学工程学会
联系方式
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询