Optimization Method Based on Load Forecasting for Three-phase Imbalance Mitigation in Low-voltage Distribution Network
编号:100 访问权限:仅限参会人 更新:2022-05-16 10:51:32 浏览:184次 张贴报告

报告开始:暂无开始时间(Asia/Shanghai)

报告时间:暂无持续时间

所在会场:[暂无会议] [暂无会议段]

视频 无权播放 演示文件

提示:该报告下的文件权限为仅限参会人,您尚未登录,暂时无法查看。

摘要
Abstract—The uneven distribution of single-phase loads in low-voltage (LV) distribution network and the uncertainty of consumers’ electricity behavior aggravate the three-phase imbalance issue, which further influence the safe and economical operation of power system. This paper proposes an optimization method based on load forecasting technique for mitigating three-phase imbalance issue in LV distribution network. Firstly, clustering algorithm is used to analyze the consumers’ electricity consumption behavior. Secondly, a deep learning algorithm based on long short-term memory (LSTM) network is applied to predict future load data of distribution network. Compared to traditional optimization method using historical load data, this method is designed to achieve better optimization performance by establishing a new three-phase imbalance model based on predicted load data. Simulation is conducted using realistic load data. Results indicate that the proposed optimization method can provide various phase-sequence adjustment strategies from different perspectives to meet the specific operation requirement of certain area. Consequently, the safety and stability of distribution network can be enhanced.
关键词
distribution network;load forecasting;long short-term memory network;three-phase imbalance
报告人
ShaoChenxu
student Southeast University

发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    05月27日

    2022

    05月29日

    2022

  • 02月28日 2022

    初稿截稿日期

  • 05月29日 2022

    注册截止日期

  • 06月22日 2022

    报告提交截止日期

主办单位
IEEE Beijing Section
China Electrotechnical Society
Southeast University
协办单位
IEEE Industry Applications Society
IEEE Nanjing Section
联系方式
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询