State Estimation for Power System Based on Graph Neural Network
编号:122 访问权限:仅限参会人 更新:2022-05-16 17:14:50 浏览:159次 张贴报告

报告开始:暂无开始时间(Asia/Shanghai)

报告时间:暂无持续时间

所在会场:[暂无会议] [暂无会议段]

视频 无权播放 演示文件 附属文件

提示:该报告下的文件权限为仅限参会人,您尚未登录,暂时无法查看。

摘要
The structure of power grid is becoming more and more complex, and the proportion of clean energy in power grid
is increasing, which puts forward higher requirements for power system state estimation. The traditional algorithm only
uses the measurement data of supervisory control and data acquisition (SCADA) system and wide area measurement
system (WAMS) at the same time section for state estimation, fails to make effective use of WAMS measurement data, and the time resolution is low. Therefore, based on graph neural network model, this paper proposes a fast state estimation
method of nodes in the whole network. This paper simulates on 57 nodes in New England and generates three different data sets. The example results show that compared with the traditional algorithm, this method can effectively use WAMS measurement data for high-precision and high-time resolution state estimation of the whole network.
关键词
Graph neural network; State estimation; Deep learning; Artificial intelligence
报告人
ZhaoyuWu
Southeast University

发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    05月27日

    2022

    05月29日

    2022

  • 02月28日 2022

    初稿截稿日期

  • 05月29日 2022

    注册截止日期

  • 06月22日 2022

    报告提交截止日期

主办单位
IEEE Beijing Section
China Electrotechnical Society
Southeast University
协办单位
IEEE Industry Applications Society
IEEE Nanjing Section
联系方式
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询