Study of abnormal electricity consumption for
编号:123 访问权限:仅限参会人 更新:2022-05-16 17:15:02 浏览:173次 张贴报告

报告开始:暂无开始时间(Asia/Shanghai)

报告时间:暂无持续时间

所在会场:[暂无会议] [暂无会议段]

视频 无权播放 演示文件

提示:该报告下的文件权限为仅限参会人,您尚未登录,暂时无法查看。

摘要
     As a new form of heating, "coal to electricity" has begun to bear fruit, but with it, the number of abnormal electricity consumption is also increasing, which is not only bringing huge losses to the power company, but also causing faults in the transmission lines. The traditional manual inspection of abnormal power faults is inefficient and low in accuracy. To address these problems, by using the power information contain- ed in the power company, the author processed the data firstly in this paper, and according to the universal law of abnormal power usage, the author could generate abnormal data. Then select the best mathematical feature indicators suitable for the model. Finally this article proposes a abnormal power usage detection model based genetic-neural network. The results and a comparis-on with conventional tests show that the proposed model is more accurate, efficient and independent of circuit information than traditional abnormal electricity usage detection.
 
关键词
coal conversion;abnormal electricity usage detection;electricity information; mathematical features;genetic-neural networks
报告人
ChengYushu
国网山西省电力公司营销部

发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    05月27日

    2022

    05月29日

    2022

  • 02月28日 2022

    初稿截稿日期

  • 05月29日 2022

    注册截止日期

  • 06月22日 2022

    报告提交截止日期

主办单位
IEEE Beijing Section
China Electrotechnical Society
Southeast University
协办单位
IEEE Industry Applications Society
IEEE Nanjing Section
联系方式
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询