Multi-model aggregation method for non-intrusive load monitoring based on stacking
编号:171 访问权限:公开 更新:2022-05-17 18:58:35 浏览:176次 张贴报告

报告开始:暂无开始时间(Asia/Shanghai)

报告时间:暂无持续时间

所在会场:[暂无会议] [暂无会议段]

摘要
Aiming at the problems that different non-intrusive load decomposition models are applicable to different loads and different states of the same load, a load decomposition integrated model based on stacking integrated denoising autoencoder model and gated neural network model is proposed. The model first uses the denoising autoencoder model and the gated neural network model to decompose the target load of the bus active power sequence, and obtains the active power sequence of the target load corresponding to the two models; Then the fully connected neural network is used to initially aggregate the two active power sequences into an active power sequence of the target load, and the denoising autoencoder model is used for optimization to obtain the final decomposition result of the target load. Experimental results show that the integration model based on stacking can combine the decomposition advantages of the base model, give full play to the respective advantages of DAE model and Gru model, and realize accurate load decomposition.
关键词
暂无
报告人
张核
Southeast University

发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    05月27日

    2022

    05月29日

    2022

  • 02月28日 2022

    初稿截稿日期

  • 05月29日 2022

    注册截止日期

  • 06月22日 2022

    报告提交截止日期

主办单位
IEEE Beijing Section
China Electrotechnical Society
Southeast University
协办单位
IEEE Industry Applications Society
IEEE Nanjing Section
联系方式
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询