Analysis of power quality disturbance based on improved HHT and BPSO-SVM
编号:270 访问权限:仅限参会人 更新:2022-05-19 12:57:11 浏览:139次 张贴报告

报告开始:暂无开始时间(Asia/Shanghai)

报告时间:暂无持续时间

所在会场:[暂无会议] [暂无会议段]

视频 无权播放 演示文件

提示:该报告下的文件权限为仅限参会人,您尚未登录,暂时无法查看。

摘要
Abstract—Aiming at the problems of complex feature extraction and low classification accuracy of traditional composite PQD classification methods. This paper combines I. Hilbert-Huang transform (HHT) and Binary Particle Swarm Optimization- Support Vector Machine (BPSO-SVM) to analyze PDQ. The different disturbance components in the original signal are decomposed into different IMF components by EMD decomposition, so as to transform the multi classification problem into a binary classification problem to improve the classification efficiency. Aiming at the problem of modal mixing in the process of EMD decomposition, the frequency information in the same octave that is far apart in the same octave is stripped by adding a preset correction signal to the signal in the decomposition process. The simulation results of Matlab show that the accuracy of the compound disturbance classification is significantly improved.
 
关键词
power quality disturbance; SVM; BPSO; Hilbert-Huang transform
报告人
WangJiakai
长安大学

发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    05月27日

    2022

    05月29日

    2022

  • 02月28日 2022

    初稿截稿日期

  • 05月29日 2022

    注册截止日期

  • 06月22日 2022

    报告提交截止日期

主办单位
IEEE Beijing Section
China Electrotechnical Society
Southeast University
协办单位
IEEE Industry Applications Society
IEEE Nanjing Section
联系方式
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询