Research on Non-intrusive Load Monitoring Algorithm Based on Filtering and CRF
编号:272 访问权限:仅限参会人 更新:2022-05-19 13:33:34 浏览:174次 张贴报告

报告开始:暂无开始时间(Asia/Shanghai)

报告时间:暂无持续时间

所在会场:[暂无会议] [暂无会议段]

视频 无权播放 演示文件

提示:该报告下的文件权限为仅限参会人,您尚未登录,暂时无法查看。

摘要
The power big data load decomposition technique utilizing electric meter data is the key factors in the novel power system, especially NILM, because the detailed physical behavior and mathematical model of each load components is the basis of load modelling and demand response management. In this paper, a NILM algorithm based on noise filtering and Conditional Random Field model (CRF) is proposed. The data is firstly preprocessed by two filters with first-order lag filter and glitch filter, and then each load in the household is modeled by CRF. Finally, the effect of signal processing on model learning is verified by evaluating the results before and after filtering.
关键词
non-intrusive load monitoring;load disaggregate;conditional random field;glitch filter
报告人
MaoYanchun
东南大学

发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    05月27日

    2022

    05月29日

    2022

  • 02月28日 2022

    初稿截稿日期

  • 05月29日 2022

    注册截止日期

  • 06月22日 2022

    报告提交截止日期

主办单位
IEEE Beijing Section
China Electrotechnical Society
Southeast University
协办单位
IEEE Industry Applications Society
IEEE Nanjing Section
联系方式
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询