Few-shot Electric Equipment Classification via Mutual Learning of Transfer-learning Model
编号:308 访问权限:仅限参会人 更新:2022-05-20 08:57:17 浏览:166次 张贴报告

报告开始:暂无开始时间(Asia/Shanghai)

报告时间:暂无持续时间

所在会场:[暂无会议] [暂无会议段]

视频 无权播放 演示文件

提示:该报告下的文件权限为仅限参会人,您尚未登录,暂时无法查看。

摘要
Commonly, developing an accurate model to classify power equipment requires a host of equipment images. However, because of the security and sensitivity problems, the industry could provide a limited number of those images. It, therefore, raises a challenge: what makes a limited number of images effective to generate feature information for training the classification model. To address this challenge, this paper develops a Mutual Learning of Transfer-Learning (MLTL) method based on few-shot learning. Firstly, this paper utilized enhanced preprocessing on the image dataset, including rotation, random cropping, and normalization, to expand the original data. Secondly, two transfer-learning based models with different parameters are trained by the weighted sum of the cross-entropy loss and the self-supervised loss. The output of each model provides a regularization term for each other, which can be further improved by mutual learning between two models. Finally, given the K shots for each new class on the support set, the MLTL computers class weight vectors and make a prediction on the query set. Case studies on EEI-40 demonstrate that the developed MLTL method achieves 95.4% classification accuracy by collecting only 5-shot images. Additionally, to ensure the interpretability and reliability of the MLTL model, this paper visualizes the parameters of each convolution layer.
关键词
few-shot;transfer learning;electic equipment;image classification
报告人
BojunZhou
南通大学

发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    05月27日

    2022

    05月29日

    2022

  • 02月28日 2022

    初稿截稿日期

  • 05月29日 2022

    注册截止日期

  • 06月22日 2022

    报告提交截止日期

主办单位
IEEE Beijing Section
China Electrotechnical Society
Southeast University
协办单位
IEEE Industry Applications Society
IEEE Nanjing Section
联系方式
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询