Proximal-Policy-Optimization-based Intra-day Scheduling of Hydrogen Fueling Station
编号:318 访问权限:仅限参会人 更新:2022-05-20 08:55:04 浏览:164次 张贴报告

报告开始:暂无开始时间(Asia/Shanghai)

报告时间:暂无持续时间

所在会场:[暂无会议] [暂无会议段]

视频 无权播放 演示文件

提示:该报告下的文件权限为仅限参会人,您尚未登录,暂时无法查看。

摘要
Hydrogen is regarded as one of the most promising energy in the future, and the intra-day scheduling of HFSs has received more and more attention. However, the uncertainty of the hydrogen loads keeps increasing with the development of hydrogen-based vehicles. To deal with the uncertainty, a Proximal-Policy-Optimization-based (PPO-based) intra-day scheduling method of hydrogen fueling station (HFS) is presented. The PPO-based method can well manage the continues operation of the HFS. Moreover, the actions are reduced to make full use of the computing resources and the advantages of both reinforcement learning and optimization model can be combined. The results show that the PPO-based method can well manage the energy in the random environment and has the potential to face the strong uncertainty.
关键词
energy storage; reinforecement learning; intra-day scheduling; hydrogen fueling station; hydrogen
报告人
BinruiCao
student 西安交通大学

发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    05月27日

    2022

    05月29日

    2022

  • 02月28日 2022

    初稿截稿日期

  • 05月29日 2022

    注册截止日期

  • 06月22日 2022

    报告提交截止日期

主办单位
IEEE Beijing Section
China Electrotechnical Society
Southeast University
协办单位
IEEE Industry Applications Society
IEEE Nanjing Section
联系方式
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询