Multi-Time Granularity Line Loss Prediction for Distribution Network Based on MIC and Deep Learning
编号:365 访问权限:仅限参会人 更新:2022-05-23 15:49:43 浏览:184次 张贴报告

报告开始:暂无开始时间(Asia/Shanghai)

报告时间:暂无持续时间

所在会场:[暂无会议] [暂无会议段]

视频 无权播放 演示文件 附属文件

提示:该报告下的文件权限为仅限参会人,您尚未登录,暂时无法查看。

摘要
With the rapid advancement of smart grid construction and the increasing maturity of big data and artificial intelligence technologies in recent years, the exponential growth of grid operation measurement data has provided effective support for accurate prediction of distribution grid line loss. However, the traditional prediction method based on physical mechanisms cannot effectively analyze the non-linear hidden connection between the multiple sources of the data and the transmission line loss of the distribution power grid. Thus, this article proposes a multi-time granularity prediction way for the transmission line loss of the distribution power grid based on the maximal information coefficient (MIC) and deep learning, which quantitatively describes the correlation between input features and output features. Compared with linear correlation analysis, the feature selection method based on MIC is more comprehensive and can explore the nonlinear correlation between input features and output features. And based on the selected input feature set, combined with the deep LSTM neural network, a multi-time granularity prediction pattern of the transmission line loss is constructed, and the prediction accuracy is further improved. Finally, the proposed prediction method is validated by combining the real line loss data.
关键词
the maximal information coefficient; deep LSTM neural network; line loss prediction
报告人
JieWang
Student 南京理工大学

发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    05月27日

    2022

    05月29日

    2022

  • 02月28日 2022

    初稿截稿日期

  • 05月29日 2022

    注册截止日期

  • 06月22日 2022

    报告提交截止日期

主办单位
IEEE Beijing Section
China Electrotechnical Society
Southeast University
协办单位
IEEE Industry Applications Society
IEEE Nanjing Section
联系方式
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询