Bus load forecasting method based on DWT-SSA-Bi-LSTM neural network
编号:381 访问权限:仅限参会人 更新:2022-05-21 16:07:02 浏览:163次 张贴报告

报告开始:暂无开始时间(Asia/Shanghai)

报告时间:暂无持续时间

所在会场:[暂无会议] [暂无会议段]

视频 无权播放 演示文件

提示:该报告下的文件权限为仅限参会人,您尚未登录,暂时无法查看。

摘要
Bus load forecasting is of great significance for the safe and stable operation of power grid and the balance of supply and demand. Due to the randomness, uncertainty and the impact of renewable energy, it is difficult to access high-precision prediction of bus load. Aiming at the problems existing in bus load forecasting, such as the non-stationary load curve, the lack of feature extraction, and the dependence on experience in hyper-parameter setting, this paper firstly used discrete wavelet to transform the bus load sequence, getting more periodic high-frequency and low-frequency components, then constructing the variant network of LSTM-Bidirectional LSTM. Sparrow search algorithm is used to search the optimal hyper-parameters which contain the learning rate, the number of hidden neurons and the number of iterations. The final prediction results are obtained by forecasting and re-constructing different components respectively. The experimental results showed the forecasting performance of DWT-SSA-Bi-LSTM proposed in this paper is better.
关键词
暂无
报告人
YicongChen
北京交通大学

发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    05月27日

    2022

    05月29日

    2022

  • 02月28日 2022

    初稿截稿日期

  • 05月29日 2022

    注册截止日期

  • 06月22日 2022

    报告提交截止日期

主办单位
IEEE Beijing Section
China Electrotechnical Society
Southeast University
协办单位
IEEE Industry Applications Society
IEEE Nanjing Section
联系方式
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询