Adaptive Torque Sharing Function Control Strategy of Switched Reluctance Motor Based On Neural Network
编号:382 访问权限:仅限参会人 更新:2022-05-21 16:06:34 浏览:159次 张贴报告

报告开始:暂无开始时间(Asia/Shanghai)

报告时间:暂无持续时间

所在会场:[暂无会议] [暂无会议段]

视频 无权播放 演示文件

提示:该报告下的文件权限为仅限参会人,您尚未登录,暂时无法查看。

摘要
In this paper, an adaptive torque sharing function (TSF) control strategy of switched reluctance motor(SRM) based on neural network is proposed, which has the advantage of using BP neural network to automatically adjust the overlap angle online according to different speeds. This paper introduces the driving system and mathematical model of SRM, expounds the conventional TSF control strategy and its disadvantages caused by fixed overlap angle, and explains the reason why this disadvantage causes large torque ripple. According to this shortcoming, an adaptive TSF control strategy is proposed. This adaptive control strategy uses back propagation (BP) neural network to establish the nonlinear relationship between the speed and the overlap angle, and automatically adjusts the overlap angle according to the speed. Compared with the conventional control method, this control strategy significantly reduces the torque ripple.
 
关键词
SRM; TSF; BP neural network; torque ripple;
报告人
CaoWensheng
student Jiangxi University of Science and Technology

  • Cao Wensheng (1997-), male, master's degree student, research direction is switched reluctance motor control, email address is :554859697@qq.com

发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    05月27日

    2022

    05月29日

    2022

  • 02月28日 2022

    初稿截稿日期

  • 05月29日 2022

    注册截止日期

  • 06月22日 2022

    报告提交截止日期

主办单位
IEEE Beijing Section
China Electrotechnical Society
Southeast University
协办单位
IEEE Industry Applications Society
IEEE Nanjing Section
联系方式
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询