Electric vehicle identification and demand response capability assessment based on non-intrusive monitoring
编号:400 访问权限:仅限参会人 更新:2022-05-21 16:02:29 浏览:145次 张贴报告

报告开始:暂无开始时间(Asia/Shanghai)

报告时间:暂无持续时间

所在会场:[暂无会议] [暂无会议段]

视频 无权播放 演示文件

提示:该报告下的文件权限为仅限参会人,您尚未登录,暂时无法查看。

摘要
The current rapid development and large number of applications of electric vehicles make it necessary to further strengthen the research on the state sensing and demand responsiveness of electric vehicles for residential measurements. Based on the non-intrusive load monitoring technology and deep learning algorithm, the user's power data is processed to obtain the start and end time of possible EV charging behavior, and then the user's power magnitude data and the obtained possible charging start and end time data are used as the input data of BP neural network to identify the EV charging behavior and establish the load sensing model of residential EVs. Based on the load perception model of electric vehicles, we identify the electric load data of residential measurement, obtain the charging status information such as power and electricity of electric vehicles of users, and use the status information as the data base to evaluate the demand response capability of residential measurement electric vehicles. Finally, the simulation modeling of the above method shows that the method can identify the charging status of electric vehicles more accurately and effectively evaluate the ability of residential measurement electric vehicles to participate in demand response.
关键词
Electric Vehicles;Non-intrusive Load Monitoring;Demand response (DR)
报告人
DengJiewen
student Southeast University

发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    05月27日

    2022

    05月29日

    2022

  • 02月28日 2022

    初稿截稿日期

  • 05月29日 2022

    注册截止日期

  • 06月22日 2022

    报告提交截止日期

主办单位
IEEE Beijing Section
China Electrotechnical Society
Southeast University
协办单位
IEEE Industry Applications Society
IEEE Nanjing Section
联系方式
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询