Power Quality Disturbance Identification Method Based on Improved GSA-SVM Algorithm
编号:410 访问权限:仅限参会人 更新:2022-05-21 16:00:03 浏览:193次 张贴报告

报告开始:暂无开始时间(Asia/Shanghai)

报告时间:暂无持续时间

所在会场:[暂无会议] [暂无会议段]

视频 无权播放 演示文件

提示:该报告下的文件权限为仅限参会人,您尚未登录,暂时无法查看。

摘要
Aiming at the power quality problems caused by the use of a large amount of power electronic equipment, nonlinear load and electrified railway in the distribution network, nine common models of power quality disturbance signals are built in MATLAB / simulink for simulation analysis. In this paper, a 10-layer fast wavelet decomposition method using db4 wavelet transform is proposed, and the energy values of detail components in each layer are calculated as eigenvectors. Aiming at the problem that the penalty factor and kernel function parameters of support vector machine ( SVM ) are easy to fall into local optimal solution in the course of optimization, an improved universal gravitation search algorithm ( IGSA ) is proposed to optimize the penalty factor and kernel function parameters of SVM. By optimizing the parameters, the IGSA-SVM classifier is constructed. The extracted feature vectors are normalized and input into the constructed IGSA-SVM classifier to train and identify the datas. The proposed method is tested by adding 0 dB, 20 dB and 30 dB Gaussian white noise to the signal, and compared with the GSA-SVM classifier. The results of simulation indicate that the proposed method is effective and precise.
 
关键词
wavelet transform ; improved gravitational search algorithm; support vector machine ; power quality ; disturbance identification
报告人
Xiaohua Chen
postgraduate Dongguan University of Technology

发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    05月27日

    2022

    05月29日

    2022

  • 02月28日 2022

    初稿截稿日期

  • 05月29日 2022

    注册截止日期

  • 06月22日 2022

    报告提交截止日期

主办单位
IEEE Beijing Section
China Electrotechnical Society
Southeast University
协办单位
IEEE Industry Applications Society
IEEE Nanjing Section
联系方式
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询