Non-intrusive load perception and flexibility evaluation for electric vehicle charging station: a deep learning based approach
编号:422 访问权限:仅限参会人 更新:2022-05-21 15:57:08 浏览:132次 张贴报告

报告开始:暂无开始时间(Asia/Shanghai)

报告时间:暂无持续时间

所在会场:[暂无会议] [暂无会议段]

视频 无权播放 演示文件

提示:该报告下的文件权限为仅限参会人,您尚未登录,暂时无法查看。

摘要
Electric vehicles have the advantages of zero carbon emission, high energy efficiency and simple structure, and have been widely used today. Under the control of V2G, electric vehicles can be used as loads and distributed power sources, and become participants in the operation of auxiliary systems. Aiming at how to evaluate the load states and controllability of electric vehicle charging stations, this paper proposes a load sensing method for electric vehicle charging stations based on unsupervised learning and non-intrusive load monitoring. The proposed load sensing method firstly establishes the load sensing model according to the unsupervised learning strategy, and then uses the neural network model of the supervised learning strategy to evaluate the available regulation capability, so as to realize the load perception and regulation capability evaluation of the electric vehicle charging station. Through the verification of simulation data, it is proved that the proposed method has good performance in the evaluation of load perception and controllability of electric vehicle charging stations, which provides a feasible solution to the practical implementation of auxiliary responses by electric vehicles.
关键词
NILM, Deep learning, auxiliary service, electric vehicles, flexibility evaluation
报告人
JiaruiWang
student 东南大学

发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    05月27日

    2022

    05月29日

    2022

  • 02月28日 2022

    初稿截稿日期

  • 05月29日 2022

    注册截止日期

  • 06月22日 2022

    报告提交截止日期

主办单位
IEEE Beijing Section
China Electrotechnical Society
Southeast University
协办单位
IEEE Industry Applications Society
IEEE Nanjing Section
联系方式
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询