Spectrum Sensing Based on WaveNet for Cognitive Radio with Multiple Parallel Signal Sequences Analysis
编号:439 访问权限:仅限参会人 更新:2022-05-21 15:49:31 浏览:143次 张贴报告

报告开始:暂无开始时间(Asia/Shanghai)

报告时间:暂无持续时间

所在会场:[暂无会议] [暂无会议段]

视频 无权播放 演示文件 附属文件

提示:该报告下的文件权限为仅限参会人,您尚未登录,暂时无法查看。

摘要

Spectrum sensing is a crucial technology for cognitive radios and cognitive wireless sensing networks. In order to improve spectrum utilization and avoid interference to primary users, it is necessary to detect whether the spectrum is occupied accurately. This paper proposes a sequence-to-sequence model based on WaveNet structure for spectrum sensing as a practical solution and obtaining the occupied time location. Compared with the traditional Convolutional Neuron Network, the model proposed in this paper can be based on the signal data, reducing the dimension of input signal, and alleviating the computational burden. Furthermore, the model considers the data sequence dependence on time to obtain a comprehensive judgment, and achieves the classification of the corresponding sampling point data on each time step to realize spectrum sensing and time location. Based on the data-sequence analysis, researchers can develop more efficient wireless sensor management strategies. The model alleviates gradient-vanishing and gradient-exploding problems in longtime dependence or long time-series data that generated by high sampling data. Reducing the computational cost and energy consumption of wireless sensor networks is another novel feature of the proposed model. Compared with RNN models, the proposed model reduces the number of model parameters on a large scale. At the same time, the model can achieve the parallel signal processing and energy-saving optimization without extra parameters.

关键词
deep learning;convolutional neural network;cognitive radio;signal analysis;Wavenet;Recurrent Neural Network;Time location
报告人
WangLu
University of Waterloo

YuTing
University of Waterloo

JiaHao
Xi'An University of Technology

HongBowen
University of Alberta

DengYaping
Xi'An University of Technology

发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    05月27日

    2022

    05月29日

    2022

  • 02月28日 2022

    初稿截稿日期

  • 05月29日 2022

    注册截止日期

  • 06月22日 2022

    报告提交截止日期

主办单位
IEEE Beijing Section
China Electrotechnical Society
Southeast University
协办单位
IEEE Industry Applications Society
IEEE Nanjing Section
联系方式
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询