Bearing Fault Diagnosis Method Based on Transfer Ensemble Learning
编号:446 访问权限:仅限参会人 更新:2022-05-21 15:47:08 浏览:148次 张贴报告

报告开始:暂无开始时间(Asia/Shanghai)

报告时间:暂无持续时间

所在会场:[暂无会议] [暂无会议段]

视频 无权播放 演示文件

提示:该报告下的文件权限为仅限参会人,您尚未登录,暂时无法查看。

摘要
It is difficult to obtain bearing fault data under actual operating conditions, so a small number of data samples are captured, which leads to over-fitting problems in model training, and the trained model can only diagnose the fault under current operating conditions. In order to improve the adaptability and accuracy of bearing fault diagnosis, the bearing fault diagnosis method based on transfer ensemble learning is proposed in this paper. Firstly, the method completes model training on public datasets. Secondly, through the transfer of task domain and feature space, the problem of poor model adaptability is solved. Finally, the voting mechanism in ensemble learning is reconstructed to improve the model's ability to diagnose bearing fault under actual conditions. The experimental results show that the proposed algorithm has better bearing fault diagnosis ability compared with similar methods.
关键词
Fault Diagnosis; Transfer Learning; Ensemble Learning; Voting Mechanism
报告人
peien luo
西安理工大学

发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    05月27日

    2022

    05月29日

    2022

  • 02月28日 2022

    初稿截稿日期

  • 05月29日 2022

    注册截止日期

  • 06月22日 2022

    报告提交截止日期

主办单位
IEEE Beijing Section
China Electrotechnical Society
Southeast University
协办单位
IEEE Industry Applications Society
IEEE Nanjing Section
联系方式
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询