Motor Bearing Remaining Life Prediction Based on Unsupervised Learning
编号:534 访问权限:仅限参会人 更新:2022-05-22 09:47:36 浏览:249次 张贴报告

报告开始:暂无开始时间(Asia/Shanghai)

报告时间:暂无持续时间

所在会场:[暂无会议] [暂无会议段]

视频 无权播放 演示文件

提示:该报告下的文件权限为仅限参会人,您尚未登录,暂时无法查看。

摘要
With the development of industry, the machine becomes more and more large and complicate, correspondingly, the requirement of industrial machine reliability is more strict. As an important part of the rotating machine, the safety of the motor bearing is the key for the reliability of the machine. Recently, the development of artificial intelligence industry developed rapidly, it is popular to combine artificial intelligence technology with the reliability of the machine to predict the remaining life or fault of the bearing. Traditionally, the method would be trained by the signals and the corresponding condition first, which means it is the supervised learning method and much labeled data is required. However, it is not easy to obtain too much labeled data. A unsupervised learning method to predict the remaining life of bearing is proposed in this paper. The Fast Fourier Transform(FFT) is used to construct frequency-domain features first, then, moving the clustering centers appropriately to obtain the optimal boundary for remaining life prediction based on Euclidean distance. The superiority of the proposed method is shown by the results of the experiments.
 
关键词
Motor bearing;remaining life;unsupervised learning;FFT;Euclidean distance
报告人
WangHaowen
Huazhong University of Science and Technology

发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    05月27日

    2022

    05月29日

    2022

  • 02月28日 2022

    初稿截稿日期

  • 05月29日 2022

    注册截止日期

  • 06月22日 2022

    报告提交截止日期

主办单位
IEEE Beijing Section
China Electrotechnical Society
Southeast University
协办单位
IEEE Industry Applications Society
IEEE Nanjing Section
联系方式
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询