Wind Power Scenario Generation Considering Wind Power Variations
编号:554 访问权限:仅限参会人 更新:2022-05-22 12:00:29 浏览:182次 张贴报告

报告开始:暂无开始时间(Asia/Shanghai)

报告时间:暂无持续时间

所在会场:[暂无会议] [暂无会议段]

视频 无权播放 演示文件

提示:该报告下的文件权限为仅限参会人,您尚未登录,暂时无法查看。

摘要
The uncertainty of renewable energy brings adverse effects to renewable energy consumption, and therefore, how to accurately describe the uncertainty of renewable energy becomes more and more important. Though great progress has been made in this field, these existing methods cannot consider the variation characteristic of wind power well. To tackle this problem, this paper decomposes the historical data of wind farms into state components and variations, where state components of wind power output are used to train WGAN-GP. Through the game training of WGAN-GP, the generative model can establish the mapping between noise distribution and wind power state component set. Then, variations are sampled from the corresponding t location-scale distribution and later added to the state component to generate scenarios of wind power. The simulation results show that the generated data by the proposed model closest imitates the probability distribution of historical data.
关键词
Scenario generation; Wind power and its variations; Generative Adversarial Networks with Wasserstein distance;
报告人
ShengLi
Postgraduate Student Huazhong University of Science and Technology

发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    05月27日

    2022

    05月29日

    2022

  • 02月28日 2022

    初稿截稿日期

  • 05月29日 2022

    注册截止日期

  • 06月22日 2022

    报告提交截止日期

主办单位
IEEE Beijing Section
China Electrotechnical Society
Southeast University
协办单位
IEEE Industry Applications Society
IEEE Nanjing Section
联系方式
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询