Fault Waveform Construction Method for Detecting the Intelligent Switch based on GAN and CNN
编号:588 访问权限:仅限参会人 更新:2022-05-22 18:05:35 浏览:206次 张贴报告

报告开始:暂无开始时间(Asia/Shanghai)

报告时间:暂无持续时间

所在会场:[暂无会议] [暂无会议段]

视频 无权播放 演示文件

提示:该报告下的文件权限为仅限参会人,您尚未登录,暂时无法查看。

摘要
The data source for detecting the Intelligent Switches is limited, and the data con not reflect actual fault condition, this paper proposes a fault waveform construction method for detecting the intelligent switch. By extracting the features in time and frequency domain of the fault waveform, a multi-dimensional fault feature matrix is constructed, and the fault waveform construction model is obtained through convolutional neural network(CNN) and generative adversarial network(GAN) training. In the model, the GAN model is used to construct fault waveform and the constructed waveforms are classified to various fault conditions by CNN network. Accurate fault waveform can be generated through the model. Finally, the constructed waveform is tested through experiments.
关键词
fault feature; neural network; waveform construction; intelligent switch
报告人
PengZhang
Student China University of Mining and Technology

发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    05月27日

    2022

    05月29日

    2022

  • 02月28日 2022

    初稿截稿日期

  • 05月29日 2022

    注册截止日期

  • 06月22日 2022

    报告提交截止日期

主办单位
IEEE Beijing Section
China Electrotechnical Society
Southeast University
协办单位
IEEE Industry Applications Society
IEEE Nanjing Section
联系方式
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询