A data-driven approach to estimate traffic flow in large road networks
编号:141 访问权限:仅限参会人 更新:2021-12-03 10:14:49 浏览:132次 张贴报告

报告开始:暂无开始时间(Asia/Shanghai)

报告时间:暂无持续时间

所在会场:[暂无会议] [暂无会议段]

暂无文件

摘要
Vehicular traffic flow information that is collected by traffic sensing devices is crucially important for transportation planning and transportation management. However, traffic sensing devices are typically distributed sparsely in road networks owing to their high installation and maintenance costs. The present study combines license plate recognition (LPR) data with taxi GPS trajectory data to develop a data-driven approach for estimating traffic flow in large road networks. The approach is applied to estimate traffic flow for an actual road network comprising 5,495 road segments using the traffic flow records of only 68 road segments (1.2% of the total) obtained with installed LPR devices. Five-fold cross validation is employed to directly verify the estimated traffic flow for road segments with LPR devices, and traffic speed is used to indirectly verify the estimated traffic flow for road segments without LPR devices. The developed data-driven approach provides an alternative and cost-efficient way of acquiring additional traffic flow information rather than installing more traffic sensing devices on roads. Keywords: Traffic Flow, Taxi GPS Data, LPR Data, Big Data
关键词
CICTP
报告人
Zhiren Huang
Central South University

稿件作者
Zhiren Huang Central South University
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    12月17日

    2021

    12月20日

    2021

  • 12月16日 2021

    报告提交截止日期

  • 12月24日 2021

    注册截止日期

主办单位
Chinese Overseas Transportation Association
Chang'an University
联系方式
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询