Discerning asthma endotypes through comorbidity mapping
编号:56 访问权限:仅限参会人 更新:2022-07-23 18:01:42 浏览:910次 口头报告

报告开始:2022年07月24日 17:35(Asia/Shanghai)

报告时间:15min

所在会场:[S3] 分会场3 [S3-2] 精准医学与转化医学信息学

演示文件

提示:该报告下的文件权限为仅限参会人,您尚未登录,暂时无法查看。

摘要
Asthma has long been recognized as a heterogeneous, complex syndrome, both clinically and pathogenetically. Identifying asthma endotypes and defining genetic and environmental contributions have been challenging. We reasoned that individuals with asthma plus different comorbidities (e.g., cardiovascular vs gastrointestinal diseases) may represent distinct endotypes of asthma that arise in disparate genetic variation and life-time environmental exposure backgrounds. To test this hypothesis, we first computationally discovered 22 distinct asthma comorbidity patterns (“asthma comorbidity subgroups”) using diagnosis records for over 151 million US residents. Our model-based inference defined each subgroup by its frequency distribution of comorbid diseases. Eleven of the 22 subgroups could also be found in the UK Biobank; we then assigned individuals there to one of the eleven subgroups, and conducted genome-wide association analyses by comparing asthma cases and non-asthma controls within each subgroup as well as in all subgroups combined. We identified 109 independent loci significantly associated with asthma, of which 52 were replicated in a follow up multi-ancestry meta-analysis across different ethnicity subsamples taken from UK Biobank, US BioVU, and Biobank Japan. In particular, 14 loci conferred asthma risk in multiple subgroups as well as in all these subgroups combined; importantly, another six loci conferred asthma risk in one subgroup only. Furthermore, we observed that the strength of association between asthma and each of 44 health-related phenotypes varied dramatically across subgroups; for example, red blood cell production and accumulation was especially associated with asthma in the subgroup marked by high frequencies of lung diseases, while strong association with local environment and physical activities was observed in the subgroup marked predominantly by diabetes comorbidity. This work reveals subpopulations of asthma patients that are distinguished by comorbidity patterns, asthma risk loci, gene expression, and health-related phenotypes, and can therefore be considered as different asthma endotypes. The presented workflow has general applicability to characterize endotypes of other heterogeneous complex diseases.
关键词
electronic health record;comorbidity pattern;clustering;disease subtyping
报告人
贾耿介
研究员 中国农业科学院农业基因组研究所

稿件作者
贾耿介 中国农业科学院农业基因组研究所
SolwayJulian University of Chicago
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    07月22日

    2022

    07月25日

    2022

  • 06月15日 2022

    初稿截稿日期

  • 07月05日 2022

    提前注册日期

  • 08月01日 2022

    注册截止日期

主办单位
中国生物工程学会计算生物学与生物信息学专业委员会
中山大学中山眼科中心
中山大学医学院
南方医科大学
承办单位
中山大学中山眼科中心
中山大学医学院
南方医科大学
联系方式
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询