Lightning Forecast Deep Learning Model Based on Bayesian Optimization and its Application in Power Grid
编号:567 访问权限:仅限参会人 更新:2022-09-13 11:29:00 浏览:177次 张贴报告

报告开始:暂无开始时间(Asia/Shanghai)

报告时间:暂无持续时间

所在会场:[暂无会议] [暂无会议段]

视频 无权播放 演示文件

提示:该报告下的文件权限为仅限参会人,您尚未登录,暂时无法查看。

摘要
Lightning forecast is a prerequisite to realize active protection of lightning disaster in power grid. In order to further improve the forecast effect, this paper proposes a lightning forecast method based on Deep Neural Network. Firstly, a unified spatio-temporal grid is used to complete the normalization proc-essing of lightning and meteorological data in Hubei province in 2020. Meteorological parameters strongly correlated with lightn-ing activities are extracted by Chi-square unity test. Then, the ADASYN technique was used to over-sample the positive samples in the training set, and the DNN forecast model was trained with the probability of lightning occurrence as output, and the Bayes-ian algorithm was used to optimize the combination of hyper-parameters. Finally, the forecast results are verified with specific lightning trip records. The results show that the lightning forecast probability of detection, false alarm ratio and threaten score of the proposed method are 83.19%, 17.611% and 70.40%, and the lightning trip early warning accuracy of UHV transmission lines is 81.8%. This method can be used for active protection of power network lightning fault based on forecast information, which is of great significance to reduce lightning disaster loss and improve lightning protection level of line.
关键词
Lightning forecast; Deep learning; Chi-square test; ADASYN; Bayesian Optimization
报告人
Yonggang Zhang
NARI Group Corporation Ltd

My research interests include lightning forecast, early warning of power grid lightning failure and lightning protection.

稿件作者
Yonggang Zhang NARI Group Corporation Ltd
Shanqiang Gu Wuhan NARI Limited Liability Company, State Grid Electric Power Research Institute
Qiuyang Li State Grid Qinghai Electric Power Research Institute
Jian Li NARI Group Corporation Ltd;Hubei Key Laboratory of Power Grid Lightning Risk Prevention
Yu Wang Wuhan NARI Limited Liability Company, State Grid Electric Power Research Institute
Dawei Wu NARI Group Corporation Ltd;Hubei Key Laboratory of Power Grid Lightning Risk Prevention
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    09月25日

    2022

    09月29日

    2022

  • 08月15日 2022

    提前注册日期

  • 09月10日 2022

    报告提交截止日期

  • 11月10日 2022

    注册截止日期

  • 11月30日 2022

    初稿截稿日期

  • 11月30日 2022

    终稿截稿日期

主办单位
IEEE DEIS
承办单位
Chongqing University
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询