A Spatiotemporal Weighted K-Nearest Neighbor Model for Short-Term Space Mean Speed Prediction
编号:139 访问权限:仅限参会人 更新:2022-07-06 21:13:07 浏览:148次 张贴报告

报告开始:暂无开始时间(Asia/Shanghai)

报告时间:暂无持续时间

所在会场:[暂无会议] [暂无会议段]

演示文件

提示:该报告下的文件权限为仅限参会人,您尚未登录,暂时无法查看。

摘要
Timely and accurate traffic prediction has gained increasing importance for traffic management. This study proposes an improved k-nearest neighbor (KNN) model to enhance prediction accuracy with consideration of spatiotemporal correlation. This study tries to find more suitable nearest neighbors by adjusting the influence of time and space factors on the state matrix. Four different methods are tried in this study to weight the state matrix to improve distance measurement in KNN. The method using the Gaussian function to weight the time dimension and the correlation coefficient of the velocity series to weight the space dimension (KNN-GC) performs best. Compared to original KNN, the accuracy of KNN-GC increases by 8.21%. Besides, KNN-GC significantly improves the multi-step prediction accuracy and consistently outperforms the competing models when the prediction step is within 30 minutes. Consequently, the spatiotemporal weighted KNN method is promising in short-term traffic prediction.
关键词
K-nearest neighbor, Spatiotemporal, Gaussian weighting, Multi-step prediction
报告人
Liu Tong
Southeast University

发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    07月08日

    2022

    07月11日

    2022

  • 07月11日 2022

    报告提交截止日期

  • 07月11日 2022

    注册截止日期

主办单位
Chinese Overseas Transportation Association
Central South University (CSU)
联系方式
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询