Moving Object Detection based on 3D Scene Flow for Autonomous Vehicles
编号:140 访问权限:仅限参会人 更新:2024-02-29 17:39:00 浏览:168次 张贴报告

报告开始:暂无开始时间(Asia/Shanghai)

报告时间:暂无持续时间

所在会场:[暂无会议] [暂无会议段]

演示文件

提示:该报告下的文件权限为仅限参会人,您尚未登录,暂时无法查看。

摘要
The precise perception of moving objects in a dynamic environment is an essential task for autonomous vehicles. Existing object detection methods using point clouds are difficult to distinguish the moving and static objects. Inspired by the excellent performance of the optical flow method in moving objects detection in the image domain, we adopt optical flow method for point cloud data and propose a new moving object detection method using point clouds. The proposed new method contains semantic constraints and a scene flow module. In detail, we first fuse semantic information to judge static objects, such as ground and buildings, and exclude these points of static objects; then we apply the scene flow module to estimate the motion vector field of two consecutive point clouds and predict moving or static labels to each point. At the end, exhaustive experiments with a public SemanticKITTI dataset are conducted for validation and evaluation. The results demonstrate the competitive performance of the proposed method comparing to the existing state-of-the-art methods.
关键词
moving object detection;dynamic environment;point cloud;semantic;scene flow
报告人
unhao Liu Y

发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    07月08日

    2022

    07月11日

    2022

  • 07月11日 2022

    报告提交截止日期

  • 07月11日 2022

    注册截止日期

主办单位
Chinese Overseas Transportation Association
Central South University (CSU)
联系方式
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询