An Effective Abnormal Behavior Detection Approach for In-vehicle Networks Using Feature Selection and Classification Algorithm
编号:151 访问权限:私有 更新:2022-07-06 23:06:33 浏览:127次 张贴报告

报告开始:暂无开始时间(Asia/Shanghai)

报告时间:暂无持续时间

所在会场:[暂无会议] [暂无会议段]

演示文件

提示:该报告下的文件权限为私有,您尚未登录,暂时无法查看。

摘要
Abnormal detection has become an essential method of security protection in automotive. In order to meet the compatibility between electronic control units (ECUs), the data transmitted in controller area network (CAN) bus need to obey different protocols and specific communication rules. Generally, these rules can be learnt through statistics and used in the abnormal detection of in-vehicle networks. However, satisfactory abnormal detection performance is hard to guaranteed when the in-vehicle network communication rules is relatively simple. To improve the detection performance comprehensively, this paper chooses the classification algorithm to carry out anomaly detection. Considering the particularity of in-vehicle networks, this paper propose a classification algorithm based on the feature vectors of CAN bus packets. Combining with the feature vectors, the convolutional neural network (CNN) algorithm is used to realize high detection performance for in-vehicle networks. Moreover, the real vehicle experiment have verified the satisfactory results for the proposed classification algorithm.
 
关键词
In-vehicle networks, abnormal detection, feature selection, classification algorithm
报告人
Haojie Ji
Research Assistant Beihang University

发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    07月08日

    2022

    07月11日

    2022

  • 07月11日 2022

    报告提交截止日期

  • 07月11日 2022

    注册截止日期

主办单位
Chinese Overseas Transportation Association
Central South University (CSU)
联系方式
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询