ANN-Bayes-Based Travel Time Prediction Method for Signalized Corridors
编号:160 访问权限:仅限参会人 更新:2022-07-07 02:15:58 浏览:173次 张贴报告

报告开始:暂无开始时间(Asia/Shanghai)

报告时间:暂无持续时间

所在会场:[暂无会议] [暂无会议段]

演示文件

提示:该报告下的文件权限为仅限参会人,您尚未登录,暂时无法查看。

摘要
Uncertainties always lie in predicting travel time along a signalized corridor or dynamic urban network. Frequent interrupted traffic flows, varying signal timing schemes, crossing traffic, and dynamic route choices make arterial travel time estimations much more challenging than freeways. This paper presents a study of developing an Artificial Neural Network techniques and Bayes algorithms for signalized corridors travel time prediction. Two types of models are tested with the data source obtained along the US-27 corridor in Ohio, including hourly instantaneous travel time prediction model and realized route travel time prediction model. The study suggests that the proposed methods can effectively capture the travel time patterns by combining a base profile and an ANN-Bayes-trained dynamic profile, and make it more sensitive to a variation aroused by non-recurring congestion. The testing results indicates a good performance of the predicted travel time models that the most errors fall into the range of 0.608 to 0.485, much lower than the threshold standard deviation (2.24) and close to 6% of mean value (0.077).
关键词
暂无
报告人
Wei Lin
University of Cincinnati

发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    07月08日

    2022

    07月11日

    2022

  • 07月11日 2022

    报告提交截止日期

  • 07月11日 2022

    注册截止日期

主办单位
Chinese Overseas Transportation Association
Central South University (CSU)
联系方式
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询