Short-term Demand Forecasting Analysis Based on Public Bicycle IC Card Data
编号:30 访问权限:公开 更新:2022-07-06 14:55:31 浏览:202次 张贴报告

报告开始:暂无开始时间(Asia/Shanghai)

报告时间:暂无持续时间

所在会场:[暂无会议] [暂无会议段]

摘要
In order to improve the level of public transport services, cover the blind spots of public transport stations and improve the market competitiveness of public bicycles, it is therefore necessary to analyse the public bicycle rental and return characteristics and carry out short-time traffic demand forecasting analysis. Based on the public bicycle IC card data, this paper introduces rental and return coefficients to cluster public bicycle stations, analyses the spatial and temporal characteristics of the rental and return demand of various stations, determines the factors affecting public bicycle travel, and establishes an improved ARIMA model that takes into account station location, temperature and other factors to forecast the short-time demand of various public bicycle stations. The model was validated by combining the demand data of public bicycle rental and return in Ningbo, and the ARIMA(9,2,2) model was found to be effective in fitting the demand data of the third category of stations.
关键词
Public bicycle;IC Card data;Short-term demand forecast;ARIMA model
报告人
Han CHEN
postgraduate student Chang'an University

发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    07月08日

    2022

    07月11日

    2022

  • 07月11日 2022

    报告提交截止日期

  • 07月11日 2022

    注册截止日期

主办单位
Chinese Overseas Transportation Association
Central South University (CSU)
联系方式
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询