Short-Term Inbound Passenger Flow Forecast of Urban Rail Transit Based on LightGBM
编号:61 访问权限:公开 更新:2022-07-06 14:29:53 浏览:152次 张贴报告

报告开始:暂无开始时间(Asia/Shanghai)

报告时间:暂无持续时间

所在会场:[暂无会议] [暂无会议段]

摘要
Short-term passenger flow prediction plays an important role in the guidance, control, and management of intelligent transportation systems. Aiming at the problems of unclear influencing factors and low prediction accuracy of the current short-term prediction methods of passenger flow, this paper proposes a passenger flow prediction method based on gradient boosting. Based on the spatio-temporal correlation passenger flow, the features that may affect passenger flow are extracted from the inbound AFC (Automatic Fare Collection System) data of urban rail transit. The data set is aggregated by the passenger flow every ten minutes. Finally, the LightGBM (light gradient boosting machine) model is established to realize efficient and accurate short-term passenger flow prediction. Experimental verification based on the AFC inbound data set of Nanjing rail transit shows that the prediction accuracy of the LightGBM model is higher than that of the Fbprophet model.

 
关键词
暂无
报告人
Zhang Mengdie
Southeast University

发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    07月08日

    2022

    07月11日

    2022

  • 07月11日 2022

    报告提交截止日期

  • 07月11日 2022

    注册截止日期

主办单位
Chinese Overseas Transportation Association
Central South University (CSU)
联系方式
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询