Prediction Model of High-Speed Railway’s Passenger Flow Seat Structure Based on Improved LSTM
编号:74 访问权限:仅限参会人 更新:2022-07-06 14:01:18 浏览:262次 张贴报告

报告开始:暂无开始时间(Asia/Shanghai)

报告时间:暂无持续时间

所在会场:[暂无会议] [暂无会议段]

演示文件

提示:该报告下的文件权限为仅限参会人,您尚未登录,暂时无法查看。

摘要
The seat structure of passenger flow is the specific performance of passenger travel demand characteristics under certain transport supply conditions. In this paper, the influence of income level, transit time, and the relationship between supply and demand on passenger flow structure is considered as independent variables, and the proportion of seats at different classes is a dependent variable. The long and short-term memory neural network model (LSTM) based on deep learning is constructed, and the simulated annealing algorithm (SA) is used to optimize the hyperparameters of the model, forming an SA-LSTM model for passenger flow structure prediction of high-speed railway. Using passenger flow data of the Yangtze River Delta, the prediction accuracy of this model reaches 97.36%. Compared with other models, the proposed model has better prediction accuracy and generalization ability.
关键词
High-speed rail;passenger flow seat structure;LSTM;simulated annealing algorithm
报告人
Tong WU
Student Tongji University.

He is a PhD candidate, focusing on rail transit operation and management planning

发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    07月08日

    2022

    07月11日

    2022

  • 07月11日 2022

    报告提交截止日期

  • 07月11日 2022

    注册截止日期

主办单位
Chinese Overseas Transportation Association
Central South University (CSU)
联系方式
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询