Thermal Infrared Technology Based Traffic Target Detection Under Inclement Weather
编号:86 访问权限:公开 更新:2022-07-06 12:57:40 浏览:225次 张贴报告

报告开始:暂无开始时间(Asia/Shanghai)

报告时间:暂无持续时间

所在会场:[暂无会议] [暂无会议段]

摘要
Traffic infrared target detection in inclement weather still needs further improvement. To improve the accuracy of thermal target detection algorithms in inclement weather, this paper introduced the YOLOv4 network as detection model. By optimizing the activation function and batch size of network, it could gain lower loss, higher converge speed and good mean average precision (mAP). In our experiment, FLIR dataset and pre-trained YOLOv4 weights via MSCOCO was used to train the initial model, model with modified active function, and model with both modified activate function and network batch size. And these models were used to run the detection tests on the thermal data we shot. Through experiments the adjusted YOLOv4 model obtained a higher mAP (82.71%), lower avgLoss  (0.2012%) and a higher accuracy of rainy target detection (84%) compared with other object detectors.
 
关键词
Traffic Sensors;Inclement Weather;Thermal Infrared Image;Living Target Detection;YOLOv4 Network
报告人
Hngjun TAN
Master Tongji University

发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    07月08日

    2022

    07月11日

    2022

  • 07月11日 2022

    报告提交截止日期

  • 07月11日 2022

    注册截止日期

主办单位
Chinese Overseas Transportation Association
Central South University (CSU)
联系方式
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询