Downlink IP Throughput Modeling and Prediction with Deep Neural Networks
编号:48 访问权限:仅限参会人 更新:2022-10-11 11:28:26 浏览:319次 口头报告

报告开始:2022年10月21日 16:30(Asia/Shanghai)

报告时间:15min

所在会场:[SS] Special Session [SS6] SS6: Data-Driven Methods for Real-World Wireless Network Modeling and Optimization

视频 无权播放 演示文件

提示:该报告下的文件权限为仅限参会人,您尚未登录,暂时无法查看。

摘要
With the development of machine learning, deep neural networks are widely used in wireless communication systems for modeling and prediction. Neural networks have powerful data fitting capability and are suitable for complex multi-factor communication scenarios. The downlink IP throughput, defined as the payload data volume on IP level per elapsed time unit on the Uu interface, is an important performance metric for the quality of service experienced by the end user. In this paper, we propose a deep neural network-based modeling approach to predict the downlink IP throughput. Real-trace data of cellular systems, i.e., user-uploaded data including physical layer measurement, user scheduling information, user throughput and so on, are used for model training and testing. The experimental results show that our proposed model performs well for downlink IP throughput prediction.
 
关键词
暂无
报告人
Jianhang Zhu
SUN YAT-SEN University

Huang Jiajie

发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    10月19日

    2022

    10月22日

    2022

主办单位
Zhejiang University
承办单位
Zhejiang University
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询