179 / 2023-08-31 20:07:36
SLAM Algorithm for Complex Noise Environment in the Underground Coal Mine
SLAM, underground coal mine, colored heavy-tailed measurement noise, variational Bayesian, measurement differencing
全文待审
嘉祥 赵 / 中国矿业大学
国庆 王 / 中国矿业大学
春雨 杨 / 中国矿业大学
磊 马 / 中国矿业大学
潇潇 范 / 中国矿业大学
伟 代 / 中国矿业大学
In the field of intelligent mining, simultaneous localization and mapping (SLAM) is a crucial technology that contributes to the development of unmanned mining operations. This paper presents a robust   cubature Kalman filtering algorithm for SLAM applications for scenarios where the measurement noise exhibits colored heavy-tailed features. First, the colored measurement noise is eliminated by the measurement differencing method. Then, within the variational Bayesian framework, we model the heavy-tailed noise using the generalized hyperbolic distribution. Through a series of iterative processes, we obtain the posterior distribution of the system state vector, the noise covariance matrix, and the auxiliary parameter. The generalized hyperbolic distribution can degenerate into a variety of heavy-tailed distributions, and thus our proposed algorithm is a framework for solving the state estimation problem under colored heavy-tailed measurement noise. Through a comprehensive approach that includes 2D target tracking simulation, SLAM environment simulation, and experiments on real datasets, we perform a comparative analysis between the proposed algorithm and existing algorithms. Our results demonstrate the superior estimation capability of the proposed algorithm.
重要日期
  • 会议日期

    10月26日

    2023

    10月29日

    2023

  • 10月15日 2023

    摘要截稿日期

  • 10月15日 2023

    初稿截稿日期

  • 11月13日 2023

    注册截止日期

主办单位
国际矿山测量协会
中国煤炭学会
中国测绘学会
承办单位
中国矿业大学
中国煤炭科工集团有限公司
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询