252 / 2023-09-30 04:37:45
GNSS Zenith Direction Time Series Denoising Methods for Mine Subsidence Monitoring
Zenith time series, ICEEMDAN, wavelet thresholding, noise reduction
摘要待审
世成 谢 / 安徽理工大学地球与环境学院;安徽理工大学空间信息与测绘工程学院
学祥 余 / 安徽理工大学空间信息与测绘工程学院
GNSS technology is a crucial tool for mining subsidence monitoring. However, it faces challenges from external environmental interference, resulting in a noisy time series. The zenith-direction noise, in particular, significantly impacts the measurement results. We introduce a novel noise reduction method, PSOGWO-ICEEMDAN-WT, combining a hybrid gray wolf particle swarm optimization algorithm with an enhanced adaptive noise-complete set empirical modal decomposition and wavelet thresholding. We first use the PSOGWO algorithm to determine the optimal white noise weights and the number of noise additions for ICEEMDAN. Then, we apply PSOGWO-ICEEMDAN decomposition to the GNSS zenith direction time series data, yielding a series of intrinsic modal functions (IMFs). We then employ multiscale alignment entropy as an evaluation metric and set thresholds to segregate the IMFs into noise-containing components. The IMFs are divided into noise-containing and pure IMF components. We apply wavelet thresholding to reduce noise in the former. Finally, we combine these noise-reduced components with the pure IMFs to obtain the cleaned data. We conducted experiments using both simulated signals and measured data from an automated monitoring station in a mining area. The results confirm that our method effectively removes noise from GNSS zenith direction time-series data, providing reliable data for subsequent workings settlement analysis.
重要日期
  • 会议日期

    10月26日

    2023

    10月29日

    2023

  • 10月15日 2023

    摘要截稿日期

  • 10月15日 2023

    初稿截稿日期

  • 11月13日 2023

    注册截止日期

主办单位
国际矿山测量协会
中国煤炭学会
中国测绘学会
承办单位
中国矿业大学
中国煤炭科工集团有限公司
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询